In this study some biological characteristics of Coccidoxenoides perminutus Girault (Hymenoptera: Encyrtidae), an important parasitoid of the citrus mealybug, Planococcus citri, were investigated. Experiments were conducted in a climate controlled room at 25±1°C, 60±5% RH and 16:8 L:D. Detailed biological parameters of the parasitoid were obtained by constructing a life table. The raw data of reproduction used in the life chart was obtained by two different methods and analyses were also conducted with two different methods. In the first method, the amount of eggs laid daily by parasitoid were determined according to the darkened mealybug nymphs. In the second method, the amount of parasitoid exit holes were considered. Development time from egg to adult, adult longevity and total longevity of C. perminutus were determined as 15.975 days, 17.400 days and 33.375 days, respectively. The mean number of eggs laid daily was calculated as 9.377 with the first method and 6.898 with the second method. The total number of eggs laid per individual was determined as 162.475 and 118.525, respectively. Life table parameters developed from the number of eggs laid were determined as; the intrinsic rate of increase (rm) 0.2274 and 0.254 eggs/individual/day, net reproduction rate (R0) 154.797 and 112.244 eggs/individual/generation, mean generation time (T0) 18.426 and 18.324 days, gross reproduction rate (GRR) 216.804 and 155.234, doubling time (T2) 2.533 and 2.730 days and finite rate of increase (?r) 1.315 and 1.289 eggs/individual/day respectively for two methods. It is understood that the difference between the methods was resulted from the undeveloped adults from the parasitoids eggs. However, the parasitoid larvae killed the host even though adult development did not occur, and the parameters calculated by using these data were higher. The Weibull distribution curve of age dependent survival rate (lx) data was drawn and it was understood to be similar to Type 1 Holing life curve that shows a tendency to an increasing population. Additionally, the Enkegaard distribution curve and its parameters were found the most suitable according to number of eggs per day.