Practical implementation has an important role in engineering education. Practical implementations, however, may not be possible in some situations, such as lack of physical possibilities, the presence of situations that may create risks during implementation, or placetime dependence. So, package programs are developed for the virtual practical implementation experience. On the other hand, these tools may not be flexible and interactive enough for all branches of science. Therefore, in this study a virtual laboratory tool was developed for the speed control of an induction motor fed by a three-level inverter. The user can select proportional-integral, proportional–integral–derivative, fuzzy logic, artificial neural network, and neuro-fuzzy controllers for the speed controller. Different working conditions for the induction motor can be simulated and the outcomes can be observed by the users. The virtual laboratory had a flexible interface and it was written on Microsoft Visual Studio 2015 IDE using C# programming language on Windows Presentation Foundation infrastructure.